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Abstract

We apply an unsupervised learning methodology to project SAR Time Series of growing rice fields onto a 3-dimensional
space, where we explicit differences between the fields. The projection method used is a Convolutional Autoencoder,
trained using a reconstruction task and a mean-square cost function. The chosen embedding space is of dimension 3, to
provide the possibility to visualise it spatially using an RGB false colour composite. We compare two subsets of rice
fields at both embedding space and original SAR time series levels to analyze the nature of the variations between the

two subsets.

1 Introduction

Since the launch of the Copernicus program and the
Sentinel-1 satellites, more and more applications have used
the concept of the SAR Time Series. Said applications in-
clude forest mapping [11], forest monitoring [12] or agri-
cultural monitoring [14, 15]. Rice fields have also been
receiving an increased amount of attention from the com-
munity as its agricultural practices, which include flooding,
can be characterized using SAR time series [9, 10].

The increase in revisit time and depth of SAR Time Series
requires the transformation of existing processing method-
ologies into new ones, more robust to these increased ob-
servable dimensions. Thus, a new methodology involving
unsupervised learning has been introduced [6]. A deep
learning architecture is used to project SAR Time-series
onto a latent space where agricultural class-specific seman-
tic is kept, while dramatically reducing the dimension of
the data, allowing for the computation of clustering algo-
rithms such as k-Means. While the original paper applies
this methodology to retrieve agricultural classes and misla-
bels [6], we present it here to model variations in agricul-
tural practices within rice fields.

First, we define this methodology and update it to present
its potential to serve as a visualization tool of SAR Time
Series. Then, we apply this methodology to Sentinel-1
Time Series of rice fields and display the resulting embed-
ding space. Finally, we show how the differences between
two subsets of rice fields in the embedding space signify
differences in their original temporal profile. We then de-
tail how variations of agricultural practices lead to these
varying representations.

2 Methodology

Introduced in [6] as a mean to unsupervisingly process
SAR Time Series, the convolutional autoencoder architec-

ture (CAE) is a deep neural network architecture consist-
ing of an encoder and a decoder. The forward pass of the
model can be written as:

p=d(e(p)) (1)
where:

e e : R* — R is the encoder. It maps input time
series p onto a representation space of lower dimen-
sion, called the embedding space, where separability
is deemed superior (n > t).

e d: R* — R" is the decoder. It reconstructs the orig-
inal input p using its latent representation e(p). Its
output is written p.

The weights of the encoder and the decoder are trained us-
ing backpropagation [13], with a mean-square cost func-
tion, to model the recreation error.

The first mention of such encoder-decoder architecture is
mentioned in [4], as a Nonlinear Principal Component
Analysis. We differ from this methodology with the use
of convolutional layers [5], here of 1-dimension, to extract
temporal patterns that acknowledge the sequential nature
of time series.

Thus, rather than working with the original time-series p,
we use their projected-self e(p). Indeed, measures of sim-
ilarity, such as distances between time-series, are more ac-
curately calculated in the embedding space, thanks to its
low dimension and its retention of semantic information
from the original time series. The amount of information
kept in the embedding space and the separability of that
same space is conditioned on the chosen dimension, . We
find that an embedding space of size ¢ = 3 is an optimal
choice for easier illustration and computation.



3  Data presentation: Sector BXII,
Sevilla, Spain

Figure 1 Illustration of agricultural fields labelled as
Rice fields (in green), over a Sentinel-1 o temporal aver-
age image, in VV polarisation, of the BXII Sector (36°59
N 6°06W)

The data used in this study is a subset of the dataset in-
troduced in [7]. It consists of a stack of 61 Sentinel-1 ra-
diometric images, fixed on orbit 74 in Ascending mode,
and all acquired during 2017. The preprocessing of the
Single-Look Complex images is detailed in [7]. Each im-
age has been manipulated and processed in dB scale, ex-
ploiting both VV and VH available polarisation.
While the original dataset contained labels for 17 classes,
we focused on rice fields (Figure 1), thus modelling ex-
isting intra-class variance within the temporal profiles of
growing rice. The presented rice fields belong to multiple
farm operators. Our final trimmed dataset then consists of
almost 300, 000 time series of rice fields.

The average temporal profile of rice fields (Figure 2)
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Figure 2 Average temporal profile of rice fields

shows a significant amount of temporal patterns, such as
increase and decrease of backscatter, that can be correlated
with the state of the field. Additionally, we observe some
events appearing only in one of the two polarisations, im-
plying that they are both crucial to characterize rice tem-
poral radiometric profile correctly.

4  Application of the CAE to the
rice-restricted BXII Sector

4.1 Training setup

On the one hand, the encoder of our CAE model is de-
signed using 3 Stacks of 1D-Convolution, 1D-MaxPooling
and ELU activation function before feeding the extracted
temporal features to fully connected layers. On the other
hand, our model’s decoder uses stacks of fully connected
layers, in-between of which we also find ELU activation
functions. Our model is trained for 100 epochs, with a
learning rate of 0.001, a batch size of 1024, using the
ADAM optimizer [3].

4.2 Visualisation of the rice embedding
space

The generated 3-dimensional embedding space can be vi-
sualised using scatter plots (Figure 3) and appears highly
sparse. We notice the presence of compact clusters, which
indicates a significant amount of sub-profiles of growing
rice that have been projected onto a highly separable em-
bedding space by the CAE model.

The rice fields embedding space can also be visualised
either as 3 separate images (Figure 4) or as a single RGB
image (Figure 5), where each component is the normal-
ized embedding space. This way, we can observe the par-
titioning of fields into groups with supposed homogeneous
temporal profiles. In addition, the variations of embedding
values appear to be delimited by the crop outlines, which
corroborates the assumption of the connection between the
variation in rice characteristics (e.g. rice type, agricultural
practice...) and the difference in time series. These division
are also likely to be connected to differences in ownerships
of the parcels. To further investigate the profiles available
in the scene, we extract two groups of outlying colors and
compare them to understand better the reason of their sep-
aration in the embedding space.

4.3 Comparison of antagonist rice temporal
profiles

The two selected subsets of rice fields, with respectively
light-blue and red-violet embedding space colors, are pre-
sented in Figure 6. Their opposite colors indicate a major
difference in their average time profile, displayed in Fig-
ure 7.

Three key dates of 2017 acquisitions, highlighted in red
in Figure 7a and Figure 7b, appear to show high differ-
ences in backscatter value between the two subsets. We
will study the state of the fields at these three dates (9th of
January, 21st of May, and 24th of October) using a com-
bination of the original oy images and optical Sentinel-2
images to better understand the variations in agricultural
practices that led to these differences, caught on by the
CAE model.

To lead our interpretation, we mostly focused on analyzing
the V'V signal, as we cannot explain the behavior of the VH
polarization in Figure 7a, between January and May (slow
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Figure 3 Illustration of rice fields embedding space. Left: 1st embedding dimension (x-axis) vs 2nd embedding dimen-
sion (y-axis), Center: 3rd embedding dimension (x-axis) vs 2nd embedding dimension (y-axis), Right: 1st embedding

dimension (x-axis) vs 3rd embedding dimension (y-axis).
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Figure 4 Rice fields embedding space represented as
3 separate images, where the color of each pixel corre-

sponds to its normalized representation in the embedding
space. (a) Ist normalized embedding space. (b) 2nd nor-
malized embedding space. (c) 3rd normalized embedding

space.

Figure 5 Rice fields embedding space represented as a
single RGB image, where the Red channel corresponds
to the normalized 1st embedding dimension, the Green
channel corresponds to the normalized 2nd embedding
dimension and the Blue channel corresponds to the nor-
malized 3rd embedding dimension

(a) First selected rice field (b) Second selected rice field

Figure 6 Select rice fields, colored using their embedding
space representation

and progressive increase in VH signal against a drastic in-
crease in VV signal).

4.3.1 Analysis of the 9th of January acquisition

The typical crop calendar [1] for rice in the Sector BXII
consists of:

¢ a seeding procedure surrounding the month of May
and June.

* a growing phase during the rest of June, July, August
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(a) oo temporal profile of the first selected subset of rice
fields (in dB)

N \ \A w

-15.0

Sigma 0 {(dB)
|

01503 02714 0328 0509 0620 0801 0912 1024 1205
Acquisition date
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Figure 7 Comparison between the average temporal pro-
files of the two subset of rice fields

and September.

* and harvest, spanning over October and its nearby
dates.

Thus, this first discriminatory date, the 9th of January, is
within the preparation state of the field. While no Sentinel-
2 images were found for this date, the Sentinel-1 results
were self-explanatory enough to draw reliable conclusions.
We show in Figure 8 the clear difference in radiometry be-

Figure 8 False color (Red: VV, Green: VH, Blue: VV-
VH) o image of the 9th of January

tween the two selected rice subsets. It appears that the
first selected field co-polarisation and cross-polarization
radiometry is almost identical to the Guadalquivir river,
shown on the top-left corner of the image. Oppositely, the
radiometry of the second subset is high, among the highest
of all 2017 acquisitions, showing the presence of vegetated
structure over the crops.

However, the acquisition date is outside the of crop calen-
dar of rice parcels. Thus, the observed differences are not

directly linked to harvesting practices of rice. Indeed, the
flooded condition of the subset 1 is likely to be connected
to Spanish agri-environmental subsidies for the protection
of agricultural systems of special interest for the popula-
tions of steppe birds and birds of the Andalusian rice fields
[8]. Among the commitments farmers have to fullfil to re-
ceive these subsidies, there is an obligation for rice fields
to be kept flooded once the productive cycle of the crop
has finished, usually from November to January/February
of the following year. As this practice is not mandatory but
only financially encouraged, not every farm operator will
flood his fields, thus resulting in differences in signals dur-
ing the first weeks of the year between rice parcels.

In addition, the higher backscatter of subset 2 parcels can
be linked to remaining vegetated structures, as the harvest
of rice fields usually leaves 20 to 25cm-high branches.

4.3.2 Analysis of the 22nd of May acquisition

We present in Figure 9 visuals for the studied area,
with Sentinel-1 false color composite image, Sentinel-2
RGB image and Sentinel-2 derived Normalized Difference
Flood Index [2]. We see that the backscatter of the first
selected subset is way lower than the second, in a similar
manner than for the 9th of January, as mentioned in Sec-
tion 4.3.1. However, the additional advantage of Sentinel-2
imagery, especially the NDFI, allows us to defend the hy-
pothesis of a flooded state of the first rice subset, while the
second remains unflooded.

To put the state of both fields in the context of rice grow-
ing and its phenology, as described by SAR Time Series,
we will use the v-shaped typical temporal evolution of the
Sentinel-1 VH/VV backscatter of rice fields, as presented
in [9].

When plotting the VH/VV backscatter profiles of both
subsets (Figure 10), we observe that the start of this v-
shaped pattern (shown as a dashed vertical red line), an
indicator of the sowing date, is offset by 24 days (or 4
Sentinel-1 acquisitions) between the two subsets, which
is another difference between the agricultural practices of
these two subsets of rice fields.

4.3.3 Analysis of the 24th of October acquisition

Now that we explicit a difference in sowing timing be-
tween the two subsets, we will further investigate the
month of October, which is likely to be the month of har-
vest [1].

Displayed in Figure 11, the Sentinel-1 false colour im-
age, the Sentinel-2 RGB and the NDFT all seem to indicate
that yet again, the difference between the two subsets of
rice fields is the flooded condition of the first. We can hy-
pothesize that while the first subset of rice fields has been
harvested, the second is still growing. Indeed, the decrease
in signal for the second subset of rice fields only happens
4 acquisitions later (approx. 24 days), which show a tem-
poral offset synced with the one observed for the sowing
process.
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(¢) Sentinel-2 derived Normalized Difference Flood Index,
using B4 and B11 bands from the acquisition of the 22nd of
May (Red: -1, indicates dried conditions; Blue: 1, indicates
flooding conditions)

Figure 9 Study of the second key differentiating date
between the two selected rice subsets, using (a) the orig-
inal sigma0 Sentinel-1 imagery, (b) Sentinel-2 RGB im-
agery from the 22nd of May and (c) NDFI derived from
the same 22nd of May Sentinel-2 acquisition

5 Conclusion

In this paper, we present the application of the Convolu-
tional Autoencoder to SAR Time Series of growing rice
fields, consisting of Sentinel-1 images acquired over a year.
The chosen 3-dimensional embedding space allows for an
RGB visualisation of that space where the separation of
rice fields in various temporal profiles is intuitively possi-
ble, without the need for a clustering methodology. Ad-
ditionally, we demonstrate that the proposed methodology
enables the analysis of variations in agricultural practices
over the rice fields, where a temporal offset in the rice sow-
ing, growing, and harvesting practices was unveiled.

This paper presents the potential of this method for agricul-
tural monitoring for a large amount of data. Its high sensi-
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Figure 10 Comparison between the average temporal
profiles of the VH/VYV ratio of the two subsets of rice
fields

bility to variations in rice-growing patterns can be used to
monitor, to some degrees, crop yield, crop health, as well
as remotely evaluate the eventual impacts of disturbances
(e.g. bacteria, fires) on agricultural growing volume.
Furthermore, its application to other fields, such as forest
monitoring, are to be explored, as the behaviour of the al-
gorithm on various agricultural plots shows excellent po-
tential for its applicability to forest temporal modelling.
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