
EXTRACTING RELEVANCE FROM SAR TEMPORAL PROFILES ON A GLACIER AND
AN ALPINE WATERSHED BY A DEEP AUTOENCODER

Laurane Charrier1,2, Thomas di Martino1,3, Elise Colin Koeniguer1,∗, Flora Weissgerber1, Aurélien Plyer 1
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ABSTRACT:

This paper proposes to use methods for compressing the temporal profiles of Sentinel-1 images, in order to be able to evaluate
and analyze the richness of the temporal dynamics, both on a glacier and on a watershed. We propose to use unsupervised deep
learning to auto-encode the temporal information in 3 dimensions, allowing to use the three descriptors as three RGB components
to produce a colored composition synthesizing the information. We compare this Convolutional AutoEncoder (CAE) approach with
a dimensionality reduction based on a Principal Component Analysis (PCA) of the temporal profiles. The two methods, CAE and
PCA, are applied to a time series over the Kyagar Glacier before and after a surge event, and on an alpine watershed to compare
the differences in dynamic evolution associated with different terrain classes with and without snow. On the one hand, on the
glacier, the stacks of 10 images used are too short for CAE to extract more than two really significant axes. On the other hand,
with longer profiles available over the alpine watershed, the CAE is interesting to improve the clustering results obtained from the
decomposition.

1. INTRODUCTION

Temporal analysis of glacier and snow dynamics is crucial to
analyze since snow and glacier evolutions are related to natural
hazards, sea level rise and changes in water resources. In this
context, radar images provide a valuable information which is
available regardless of the weather conditions during acquisi-
tion. SAR radiometric changes of the surface can be monitored
to get information on snow covers (Nagler et al., 2016), glaciers
crevasses (Leclercq et al., 2021) or glaciers outlines evolution
(Winsvold et al., 2018) for instance.

In this paper, we wish to compare approaches for fast extrac-
tion of relevant temporal information contained in SAR image
sets. A solution can be to reduce the dimension of the tem-
poral information to be able to vizualize it into a color compos-
ition. Since a color is coded in a 3-dimensional space, creating
a 3-component image from an N-component time series means
reducing the dimension of the information to 3.

To quickly visualize changes from a SAR time series, the work
described in (Colin Koeniguer and Nicolas, 2020) proposes a
visualization of change areas in colors, while pixels with stable
radiometry appear in grayscale. But this colored representa-
tion is more suitable for the visualization of very short events
occurring at a given date because a color is associated with a
single date. It is also possible to detect long events, but suf-
ficient contrast is rarely achieved in practice on natural areas
(Colin Koeniguer and Nicolas, 2020). Therefore, to visualize
a temporal stack of images of natural areas, it is preferable to
consider another method.

Another classical method to reduce the dimensionality of the
data is the Principal Component Analysis (PCA). This method
can be applied to each temporal profile associated with a pixel.
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The eigenvalues relating to the 3 components can then be used
to code the 3 RGB channels of the image. The limitation of such
a method is that the principal components are linear combina-
tions of the initial variables, and they are necessarily perpendic-
ular to each other. Moreover, it is a method that is very sensitive
to outliers. In addition, as shown in (Di Martino et al., 2021),
some variations between SAR backscattering profiles are very
subtle, and are missed by the PCA decomposition. Therefore,
it is relevant to explore other solutions.

Unsupervised deep learning using autoencoding networks can
be used to learn how to decompose a signal over main axes.
These unsupervised deep learning techniques are today afford-
able thanks to the increasing availability of SAR temporal pro-
files, in particular via the open source Sentinel-1 data of the
Copernicus Program. Hence, in this paper, we consider using
the autoencoding method presented in (Di Martino et al., 2021),
which is a method for reducing the dimension of temporal pro-
files by autoencoding. We will call this method CAE for Con-
volutional AutoEncoder.

In a first case, we consider the Kyagar glacier, for which a surge
event occurred in 2016 (Round et al., 2017). In order to con-
sider the contribution of the visualization method, we apply it
to two image stacks, one constituted during the surge event, and
the other after. The comparison of the behavior of the PCA and
CAE methods carried out in this case study will be the subject
of section 3.

In a second case, we consider the Guil valley in the Alps, to
evaluate the contribution of the temporal dimension.

2. THE VISUALIZATION PROCESS AND
COMPARISONS

We assume to have a stack of SAR images, containing T core-
gistered images of size N = nx × ny pixels.



Each pixel i of the image contains a profile of radiometric in-
tensities pi = [p
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i ], gathered in a list l of pro-

files: l = {pi, ∀i ∈ J1, NK} where N is the number of pixels in
a single image.

In the case of images containing several polarimetric channels,
as is the case for the Sentinel-1 images, p(t)i can be a vector of
values containing the respective backscatter values of the dif-
ferent polarizations.

The objective is to compress the information contained in each
intensity profile into a vector of dimension 3.

The first method considered is the classical PCA method. The
second method considered is based on an auto-encoding neural
network, which can be viewed as an extension of the PCA, lean-
ing towards a non-linear representation. Autoencoder uses con-
volutional filters, but unlike CNN-type networks traditionally
applied to images, here these filters operate along the temporal
axis. Note that this choice implies an intrinsic consideration of
causality in the network structure, since successive images of
the sequence are connected to each other.

2.1 Visualization by PCA: Principal Component Analysis

The first method evaluted is the PCA. It is applied on a set of T
temporal variables p(1)i , p

(2)
i , ..., p

(T )
i from the N realizations of

these variables, where each pixel corresponds to one realization.

The image of these T random variables can be structured in a
matrix M, with N rows and T columns.

The PCA then becomes the diagonalization of the square matrix
A = M tM of size T × T , where t corresponds to the matrix
transposition. Since A is a symmetric real matrix, it is diagon-
alizable in a basis of orthogonal eigenvectors. We then retain
the 3 eigenvectors of this matrix associated to the 3 main eigen-
values.

The 3 values retained in each pixel i correspond then to the
projection of the vector pi on these 3 eigenvectors.

In practice, it turns out that the projection on the first axis seems
to be close to the temporal average of the signal. This average
corresponds to a projection on the constant vector (1, 1, 1). This
simply means that no date is privileged over the others, and
that the first distinction between profiles is essentially between
average radiometric levels. It is then the following axes that
will focus on detecting non-stationary behavior.

2.2 Visualization by CAE: Convolutional Auto Encoder

The solution considered by autoencoder is based on the archi-
tecture presented in (Di Martino et al., 2021). This architecture
includes the use of a temporal convolutional filter that relies on
the sequential nature of the data. This sequentiality information
does not appear in the PCA since the results are invariant by
permutation of the order of the vector elements.

This architecture has been successfully applied to agricultural
plot areas (Di Martino et al., 2021). The clustering taking as
input the embeddings generated by the autoencoder has shown
very interesting properties of spatial segmentation, even though
no spatial criterion is involved in the learning process. It is for
this reason that we consider it in this article as a support for a
colored visualization of temporal information.

Unlike PCA, the embeddings learned by this Convolutional Auto
Encoder (CAE) are not ordered by importance. Moreover, they
can be negative. Therefore, in order to be able to compare them
to PCA, we spread the dynamics of each of the PCA axes and of
the different embeddings between 0 and 1, then we compute the
correlations between the pairs taken two by two. An example
of such correlation combinations is shown in Fig. 1 , which
corresponds to the case of a data set studied in the following
section on Kyagar glacier.

Figure 1. Scatter plot between each axes of PCA and CAE
embeddings. The yellow circles surround the combination of

matches selected to optimize correlations.

The first embedding will be selected to be the most correlated to
the first PCA axis in absolute value; if the correlation is negat-
ive, we then operate a change of sign on the value of the gener-
ated embedding. Then, the second embedding will be selected
using the same scheme to correlate to the second PCA axis.

For the previous example, Fig. 2 shows the correlations between
axes once the selection is made.

Figure 2. Scatter plot between each axes of PCA and CAE
embeddings after selection of the best combination and

reordering.

Both approaches have been applied to different image stacks: a
first stack over the Kyagar glacier, then a second on an alpine
watershed in France.



3. RESULTS ON THE KYAGAR GLACIER BEFORE
AND AFTER SURGE

3.1 Glacier particularities

The mountain glacier Kyagar is located in the Karakoram Moun-
tains and covers about 100 km2. It overlooks the Shaksgam
valley, at the frontier between China, India, and Pakistan. It
is a polythermal glacier spanning from 4750 to over 7000 m,
consisting of three upper glacier tributaries 6–10 km in length
which converge to form an 8 km long glacier tongue, approx-
imately 1.5 km wide. This glacier plays a key role on the river
situated dowstream of the glacier. During periods of glacier
surge, the glacier velocity suddenly increases, snow and ice ac-
cumulate downstream of the glacier, leading to the damming
of the river and the formation of a lake. The lake impounded
behind this ice dam is known to fill and empty repeatedly caus-
ing dramatic floods known as Lake Outburst Floods (GLOF)
(Round et al., 2017, Zhang et al., 2020, Haemmig et al., 2014).
The latest surge of the glacier has happened from May 2014
to March 2016, leading to a GLOF in July 2015 (Round et al.,
2017, Charrier et al., 2022). Due to the difficulty of access,
most observations of the glacier are made through satellite re-
mote sensing.

3.2 Dataset preparation

Our analysis was performed on Sentinel-1 time stacks acquired
between late 2014 and 2020. The Sentinel-1 images were core-
gistered with each other by (Round et al., 2017). The glacier
surge which occurs in 2015 opens crevasses which are charac-
terized by a strong backscattering signal (Leclercq et al., 2021).
Therefore, we have split the time stacks in two: one during and
one after the surge. The number of images inside each time
stack are roughly the same to make sure that the seasonal dy-
namics are comparable. Thus, the surge period concerns the
year 2015, with the ten dates from January to May: 01-06, 01-
18, 01-30, 02-23, 03-07, 03-19, 03-31, 04-12, 04-24, 05-06,
while the post-surge period concerns the year 2018: 01-02, 01-
14, 01-26, 02-07, 02-19, 03-03, 03-15, 03-27, 04-08, 04-20. In
order to focus on the glacier itself, we defined a mask using the
glacier outlines given in the Randolph Glacier Inventory V6.0
(Consortium et al., 2017).

3.3 Comparison between pre-surge and post-surge obser-
vation

Two separate training scenarios were tested. In the first, we
computed the PCA axes and embeddings on the 2015 data set.
Then we applied this data encoding to the 2018 images. We call
this scenario Single, because only one single calculation of the
cAE network or of the main PCA axes was performed.

In a second scenario, we recalculated the embedding or PCA
axis decompositions on the images of the second period: we call
this mode Dual because the calculations are performed twice:
once for 2015, the second for 2018.

The visualization results obtained are shown in Fig. 3.

Globally, we note a majority of the two complementary colors
green and magenta, especially on the CAE visualisation. We
can verify that the colored channels corresponding to the second
and third axes of CAE are highly correlated (0.90). The second
and third axes are therefore very close.

Very little variability is observed between the different scen-
arios of the CAE method, either between the surge and post-
surge representations in the single mode, or between the post-
surge representations from the single or dual approach.

However, both types of visualization allow to observe crevasses
with a colored contrast on the upper left part of the ice tongue.
These crevasses formed in 2015 during the surge period, and
they are a valuable indicator for a surge event (Leclercq et al.,
2021).

The images obtained by the PCA contain a greater variety of
hues in the colors. This result can be explained by the fact that
the PCA seeks to maximize the distances between axes, since
the main axes are searched to be orthogonal to the previous one.
On the contrary, PCA does not impose such conditions.

Cross-channel correlation calculations confirm these trends: In
the dual scenario, the correlation between the first CAE axis
during surge and the first axis after surge is very high (0.92),
higher than in the case of the first PCA axis (0.84).

For a given period, the 3 axes of the CAE found are all 3 highly
correlated. As an example for the post-surging period, the cor-
relation between axis 1 and axis 2 is 0.94, and the correlation
between axis 1 and 3 is 0.90.

In summary, since the axes of the CAE are less constrained in
their mathematical construction, they lead to finding axes that
are more correlated with each other. On this example, they
highlight the low number of degrees of freedom required to
represent the temporal profiles. Self-encoding networks lead to
comparable results, whether they are learned on the period dur-
ing or after the surge, contrary to the PCA which exacerbates
the contrasts.

3.4 Observation of the whole dynamics

When the scenario is performed on the entire image, and over
a much longer acquisition period, then the conclusions become
very different from the previous ones. The color compositions
found for the glacier image are shown in Fig. 4.

If it is difficult to make a quantitative evaluation, it appears that
the CAE type visualization brings out as much information as
the PCA, with a good spatial homogeneity of the zones, even
though no spatial information was used in the learning archi-
tecture. This time, we can verify that the 3 axes of the CAE are
equally well decorrelated, and therefore provide non-redundant
information.

In conclusion on this dataset, it turns out that on very short
time series, both types of visualization are sensitive to differ-
ences between the observed periods, such as glacier crevasses.
However, the CAE struggles to find embeddings that are very
different from each other. For longer stacks, CAE results in a
visualization with strong color contrast between the different
components.

As the PCA tries to find decorrelated axes, and the CAE is
free from this constraint, using the calculation of correlations
between the different embeddings of the CAE would probably
allow to develop a criterion of complexity of the temporal pro-
files: indeed, in the first case of short time-series, only one
axis seems to be representative of the information, while in the
second case, the 3 axes allow to show more decorrelated beha-
viors.



PCA - 2015 2018 2018 on 2015 training

CAE - 2015 2018 (single) 2018 (dual) on 2015 training

Figure 3. Left: 2015 visualization after compression on 2015, Middle: 2018 visualization after compression on 2018 (Single mode),
Right: 2018 visualization after compression on 2015 (DUal mode). The first line on the Top corresponds to PCA method. The second

line corresponds to CAE method

Figure 4. Comparison of PCA (Left) and CAE (Right)
visualisation schemes on a longer period 2015-2017 on Kyagar

glacier.

4. RESULTS ON A ALPINE VALLEY WITH
VEGETATION AND SNOW EVENTS: THE GUIL

WATERSHED

4.1 The Guil watershed

The second study area of this article concerns the Guil basin,
located in the French Alps. The Guil basin is an area of about
700 km² centered around the Guil valley which crosses the basin

from east to west. We considered an area of 1024x1024 pixels
centered around the village of Abriès, which corresponds to an
area of about 200 km². We consider the period between 2018-
06-26 and 2019-08-20, with data of descending mode from Or-
bit 139.

The detection of dry and wet snow in this type of basin is of
major interest to EDF, the French Electricity Group. The op-
timization of the exploitation of the hydraulic resource for the
production of electricity through the dams and the hydraulic
power plants installed along the canals and the rivers, is an im-
portant issue. For this purpose, it is necessary to be able to make
a good estimate of the stock of snow formed during the winter
that will feed the dams during the melt, in order to improve the
model for the forecast of flows.

Methods for detecting dry snow on SAR images, especially the
Lievens method (Lievens et al., 2019), are strongly impacted by
vegetation on detection results, as vegetation has a polarimetric
signature close snow at C-band.

To determine the presence of vegetation, one possible solution
is to determine if this information can be found in the temporal
profile. Therefore, we will investigate the principle of visualiz-
ation applied to these images, to analyze the contrasts obtained,
particularly in relation to the presence of vegetation.



Figure 5. Selected area and Reactiv color composition applied to
the observation period

4.2 Resulting visualizations

Fig. 6 shows the two visualization results obtained. In order
to improve the contrast of the images, a histogram equalization
has been applied to each channel.

Both types of visualization show a colored contrast, much richer
than the reactiv composition applied to the same data set and
represented on Fig. 5. The Reativ representation shows only
one green color, corresponding to the snowy areas. These are
indeed the only areas whose radiometric variations are suffi-
ciently different from a decorrelated speckle to be detected as a
change.

Figure 6. Resulting visualization schemes obtained with CAE
(left) and PCA (right)

Unlike the REACTIV composition, the representations show a
large number of shades. These different hues seem to corres-
pond to different types of terrain, as can be seen in the corres-
ponding optical image Sentinel-2 image given in Fig. 7.

We can observe different hues on the different terrain elements:
notably the forested areas in purple color, and the bare terrain
areas in shades of yellow or green, probably depending on their
snow types.

More locally, we observe better color contrast. In order to make
sure that the choice of the order of the colors is not a bias of
our visual interpretation, we proceeded to all possible different
combinations in the order of the colored channels. These per-
mutations, of which three examples are given in Fig. 8, do not
change our observations.

In order to evaluate the potential of CAE in a spatial segment-
ation approach and compare it to a segmentation performed on

Figure 7. Sentinel-2 Image on the area footprint selected over
the Guil Basin

Figure 8. Examples of visualization results by CAE (left) or
PCA (right) obtained by permutation on the order of the Red,

Green, and Blue color channels.

PCA, we focused on the analysis of a sub-area containing 3
small lakes and various terrain features. We applied the Quick-
shift spatial segmentation algorithm (Vedaldi and Soatto, 2008),
a relatively recent 2D image segmentation algorithm, based on
an approximation of kernelized mean-shift. Therefore it be-
longs to the family of local mode-seeking algorithms and is ap-
plied to the 5D space consisting of color information and image
location.

Applied to the image colored by CAE, the segmentation al-
gorithm manages to delineate the largest lake well, which the
same algorithm fails to do when applied to the image from the
PCA-type visualization (see Fig. reffig:segmentation). In other
areas, the results of segmentation applied to both visualization
schemes differ, as illustrated in Fig. 10.

In parallel to the segmentation, we also applied a K-means clus-



Figure 9. Results obtained by a Quickshift segmentation on the obtained visualizations: CAE on the left, PCA in the middle. The
image on the right corresponds to the Sentinel-2 extract on the footprint selected. Three areas leading to different results are selected.

tering on the CAE embedding space, in 10 classes. The result
of this clustering is illustrated in Figure 11. The typical intens-
ity profiles obtained are shown in Figure 12. They illustrate the
diversity of the typical profiles thus obtained. This clustering
manages to separate behaviors where the relative dynamic vari-
ations are very similar but the radiometric mean levels differ, as
for clusters 3 and 5, but it also separates profiles whose mean
levels are very similar, while presenting phenomenological dif-
ferences in the associated dynamics, as for clusters 8 and 9.

5. CONCLUSION

This paper proposed to apply deep autoencoding of Sentinel-1
temporal radiometric profiles as a basis for data compression
in dimension 3, so that it can also be used for a colored rep-
resentation. The autoencoding approach was compared to that
of a PCA-based information compression. The colored com-
positions have been applied to two mountain sites: a glacier in
Karakoram having undergone a surge event, and the Guil wa-
tershed in the Alps. At this stage, only a qualitative analysis has
been carried out. Both visualization schemes highlight the di-
versity of temporal radiometric profiles encountered on natural
areas.

This analysis reveals that the obtained behaviors differ greatly
depending on the size of the input data stack.

The main conclusion is that deep autoencoding could bring a
relevant added value compared to PCA, when the size of the
stacks is sufficient, typically about 40 dates. CAE seems to ob-
tain better contrasts and better segmented areas corresponding
to different generic profiles, which tends to confirm our pre-
vious results obtained on agricultural plots. The richness and
complexity of the observed temporal profiles justify the use of
deep learning algorithm to extract all the information as well as
possible, and not necessarily in a linear way.

On shorter events such as 10 dates, CAE struggles to find three
degrees of freedom. Therefore, a CAE could be used to estab-
lish a criterion to determine the number of degrees of freedom
necessary to describe the diversity of temporal profiles. For
example, the computation of correlations between the different
components of the output of an autoencoding could be a valu-
able a posteriori tool to determine the optimal size of the data
compression space.

The main difficulty in further validating the method is the lack
of ground truth. In order to confirm these very preliminary res-
ults, in particular the ability of the CAE to segment vegetated
areas from those covered by snow, we plan to define a scen-
ario dedicated to this study, supported by data different from
Sentinel-1.

Finally, it should be noted that our treatment approach here is
a purely temporal approach that does not take into account a
spatial criterion. This has indeed two advantages: first, the
complexity of the algorithm remains limited. Secondly, we are
sure not to lose in resolution, and the efficiency of the tem-
poral autoencoder to segment spatial contours with precision
has already been demonstrated on agricultural areas. But of
course, it will be interesting in the future to consider spatio-
temporal algorithms for a better exploitation of the data or a
better morphological management of the areas of interest.
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Silvan Leinss.

REFERENCES

Charrier, L., Yan, Y., Koeniguer, E. C., Leinss, S., Trouvé,
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Figure 12. Typical intensity profiles obtained for the 10 K-means clustering classes, and their spatial distribution on the image. In
blue: VV profiles, in orange: VH polarization profiles


