NLP

MSc Thesis: Multimodal Similarity Learning for Duplicate Product Identification

State of the art models for Similarity Learning are all based on Deep Learning architecture using Siamese Network [Gregory et al., 2015]. They define a feature extraction pipeline that creates a latent representation of input data. This embedding …

How to choose your loss when designing a Siamese Neural Network ? Contrastive, Triplet or Quadruplet ?

Deep Similarity Learning is the training of a deep learning architecture to learn to detect similarity and disimilarity between two inputs (or more). In this article, I presented, studied and compared three of the most popular losses for the task of …

Deep Similarity Learning & Siamese Networks

In this project, I explored deep similarity learning algorithms and their behaviour with different type of data (sequential data, spatial data, multimodal data). For each of these different modalities, I wrote 2 Medium articles detailing the retained method and providing my implementation.

Introduction to Deep Similarity Learning for sequences

Deep Similarity Learning is the training of a deep learning architecture to learn to detect similarity and disimilarity between two inputs (or more). In this article, I focused on similarities between sentences, presenting the theory as well as …