DIMARTINOT
Home
Experience
Academic Publications
Conferences
Awards
Coding
Blog Posts
Instagram Posts
CV
Academic Publications
Type
Uncategorized
Medium Article
Conference paper
Journal article
Thesis
Date
2023
2022
2021
2020
Detection of Forest Fires through Deep Unsupervised Learning Modeling of Sentinel-1 Time Series
With an increase in the amount of natural disasters, the combined use of cloud-penetrating Synthetic Aperture Radar and deep learning …
Thomas Di Martino
,
Bertrand Le Saux
,
Régis Guinvarc’h
,
Laetitia Thirion-Lefevre
,
Elise Colin
PDF
DOI
Grad-SLAM: Explaining Convolutional Autoencoders’ Latent Space of Satellite Image Time Series
This paper introduces a tool for explaining the latent space generated by applying convolutional autoencoders to satellite image time …
Thomas Di Martino
,
Régis Guinvarc’h
,
Laetitia Thirion-Lefevre
,
Elise Colin
PDF
DOI
FARMSAR: Fixing AgRicultural Mislabels Using Sentinel-1 Time Series and AutoencodeRs
This paper aims to quantify the errors in the provided agricultural crop types, estimate the possible error rate in the available …
Thomas Di Martino
,
Régis Guinvarc’h
,
Laetitia Thirion-Lefevre
,
Elise Colin
PDF
DOI
Modelling of agricultural SAR Time Series using Convolutional Autoencoder for the extraction of harvesting practices of rice fields
We apply an unsupervised learning methodology to project SAR Time Series of growing rice fields onto a 3-dimensional space, where we …
Thomas Di Martino
,
Régis Guinvarc’h
,
Laetitia Thirion-Lefevre
,
Elise Colin Koeniguer
PDF
Slides
Extracting relevance from SAR temporal profiles on a glacier and an alpine watershed by a deep autoencoder
This paper proposes to use methods for compressing the temporal profiles of Sentinel-1 images, in order to be able to evaluate and …
Laurane Charrier
,
Thomas Di Martino
,
Elise Colin Koeniguer
,
Flora Weissgerber
,
Aurélien Plyer
PDF
DOI
Beets or Cotton? Blind Extraction of Fine Agricultural Classes Using a Convolutional Autoencoder Applied to Temporal SAR Signatures
We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the …
Thomas Di Martino
,
Régis Guinvarc’h
,
Laetitia Thirion-Lefevre
,
Elise Colin
PDF
DOI
Multi-branch Deep Learning model for detection of settlements without electricity
We introduce a multi-branch Deep Learning architecture that allows for the extraction of multi-scale features. Exploiting the data …
Thomas Di Martino
,
Maxime Lenormand
,
Elise Colin Koeniguer
PDF
Slides
Video
DOI
Convolutional Autoencoder for unsupervised representation learning of PolSAR Time-Series
Temporal Convolutional AutoEncoders are used as feature extractors to project time series onto a latent space where similarity …
Thomas Di Martino
,
Régis Guinvarc’h
,
Laetitia Thirion-Lefevre
,
Elise Colin Koeniguer
PDF
Slides
Video
DOI
MSc Thesis: Multimodal Similarity Learning for Duplicate Product Identification
State of the art models for Similarity Learning are all based on Deep Learning architecture using Siamese Network [Gregory et al., …
PDF
Project
DOI
Cite
×